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Abstract
We examine a new approach to the visibility of interference fringes defined
as the distance L2 to the uniform distribution. We show that this approach is
superior to the standard approach when examining anharmonic fringes, while
they coincide for harmonic fringes. We demonstrate the close relationship
between this formalism and other well-studied measures of quantum
uncertainty and information. We also show that this approach preserves
the connection between visibility and correlation functions irrespective of the
complexity of the interferometric pattern.

PACS numbers: 03.65.Ca, 42.50.Dv, 42.25.Hz

1. Introduction

Interference is a basic phenomenon that occupies a relevant position in many areas of physics.
As a matter of fact, after the introduction of quantum theory, interference is a phenomenon that
can be displayed by all physical systems. This fundamental characteristic along with its wide
range of application have led to increasingly sophisticated implementations of interference
that are far from the classic examples [1, 2]. This framework has been further enlarged by the
thorough revision of fundamental concepts caused by the emergence of quantum theory. This
is the case of the phase difference variable whose proper quantum description and measurement
is still the subject of vivid controversy and active research [3]. These facts have prompted an
intense scrutiny of the information conveyed by general interference patterns and how can it
be properly measured.

Despite the dramatic growth of the subject, interference is most often analysed using
classic tools, such as the visibility, devised for the most simple observations of this phenomenon
in the form of harmonic fringes. As we show here, these tools may fail when applied to
anharmonic patterns. Moreover, in the most general case the fruitful connection between
the standard definition of visibility and correlation functions is lost. This lack of a proper
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generalization may be a source of misunderstandings as revealed by recent works in quantum
interference that suggest the redefinition of basic interferometric concepts [2, 4, 5].

In this paper, we focus on the idea of visibility as a measure of the amount of interference.
Interference is always identified as the alteration of a uniform or featureless distribution.
Therefore it seems natural to define the visibility as the distance to the uniform distribution.
Among the different possibilities available we focus on theL2 distance. This choice is justified
since it leads to meaningful results, it is closely related to other approaches to similar problems
and also because it leads to simple calculations. This distance has already been used in the
context of wave–particle duality for harmonic fringes produced by pairs of beams of a multiple
beam interferometer [4].

The main goal of this paper is to demonstrate that this new definition of visibility has
better properties than the classic approach. This is shown by means of basic relevant examples
of interference. We show that the new definition is always sensitive to the information
content of the fringes while the classic definition is rather insensitive. We show that the new
definition preserves the fruitful relation between visibility and correlation functions that the
classic definition lacks for anharmonic fringes. Finally we show that the new approach can
be recognized as a meaningful measure of fluctuations and information already used in other
contexts. Nothing similar is possible for the classic definition.

2. Visibility

We represent a general interference pattern by a real function I (φ). The actual meaning of I
and the way it is measured are fully arbitrary. From a quantum perspective we have

I (φ) ∝ tr[ρ�(φ)] (2.1)

where ρ is the density matrix representing the state of the system and �(φ) is a family of
operators that depend on the interferometric arrangement and on the measuring strategy. Note
that it is not excluded that �(φ) may depend even on ρ as in the experiment carried out in
[1]. For definiteness, in this paper we focus on interference patterns fully parametrized by
a single bounded phase variable φ defined in a 2π interval φ ∈ [−π, π). This is a very
common situation and usually φ represents phase difference. Nevertheless, it will be clear that
all formulae admit straightforward generalizations to an arbitrary number of variables with
arbitrary ranges of variation. For definiteness and without loss of generality, we assume that
the featureless uniform distribution that corresponds to total lack of interference is a constant
not depending on φ that will be denoted as 〈I 〉.

2.1. Definitions

The classic definition of visibility is [6]

Vclass = Imax − Imin

Imax + Imin
(2.2)

where Imax and Imin are the local or global maximum and minimum of I (φ), respectively.
On the other hand, we can also define the visibility V as the distance between I (φ) and

the uniform distribution 〈I 〉 [4]

V2 = 1

2π〈I 〉2

∫
2π

dφ[I (φ)− 〈I 〉]2 = 1

〈I 〉2
(〈I 2〉 − 〈I 〉2) (2.3)
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where

〈I 〉 = 1

2π

∫
2π

dφI (φ) 〈I 2〉 = 1

2π

∫
2π

dφ[I (φ)]2. (2.4)

As mentioned in the introduction we use the standard L2 distance. In the next section, we
show examples demonstrating that V is not bounded from above, ∞ > V � 0. On the other
hand, V = 0 if and only if I (φ) = 〈I 〉 for all φ. If a bounded expression for the visibility is
preferred, we may define a normalized visibility V as

V 2 = V2

1 + V2
= 1

〈I 2〉 (〈I
2〉 − 〈I 〉2). (2.5)

It can be appreciated that the only difference between equations (2.3) and (2.5) is the
denominator, 〈I 〉2 or 〈I 2〉, respectively. For simplicity, in the following we refer exclusively
to V .

All these definitions are invariant under scale transformations I (φ) → λI (φ) where λ is
a constant. We have considered global definitions (integrals extended to a full 2π interval),
but local definitions can be considered simply by suitably restricting the interval of integration
in equations (2.3) and (2.4), and replacing 2π by the length of the interval.

2.2. Fourier domain

We can express I (φ) in terms of its Fourier components

I (φ) =
∞∑

k=−∞
Ĩ k eikφ = Ĩ 0 + 2

∞∑
k=1

|Ĩ k| cos(kφ + δk) (2.6)

where

Ĩ k = Ĩ ∗
−k = |Ĩ k| eiδk = 1

2π

∫
2π

dφ e−ikφI (φ). (2.7)

With the help of this decomposition we obtain a useful expression for the visibility

V2 =
∑
k �=0

V2
k = 2

∞∑
k=1

V2
k (2.8)

where

Vk = |Ĩ k|
Ĩ 0

(2.9)

and V−k = Vk.
From a quantum perspective we can express Vk in equations (2.8) and (2.9) as

Vk = |〈ψ|Ek|ψ〉|
〈ψ|E0|ψ〉 (2.10)

where |ψ〉 represents the state of the system, assumed pure for simplicity, and Ek are the
operators

Ek =
∫

2π
dφ eikφ�(φ). (2.11)

It is worth pointing out that no relations equivalent to equations (2.8) and (2.9) can be
derived from the classic definition (2.2). The relevance and usefulness of these relations are
demonstrated below.



8808 A Luis

2.3. Harmonic and anharmonic fringes

Let us show that the above expressions in the Fourier domain imply that formulae (2.2) and
(2.3) coincide for harmonic fringes

I (φ) = Ĩ 0 + 2|Ĩ k| cos(kφ + δk). (2.12)

In this case Vk′ = 0 for k′ �= ±k, 0 and we obtain

Vclass = Imax − Imin

Imax + Imin
= 2

|Ĩ k|
Ĩ 0

= 2Vk =
√

2V . (2.13)

Thus, equations (2.2) and (2.3) give essentially the same result for harmonic fringes.
Concerning anharmonic fringes we can appreciate that equations (2.2) and (2.3) lead in

general to different results. This can easily be proven by considering a distribution of the form
I (φ) = Ĩ 0 + 2|Ĩ1| cos(φ) + 2|Ĩ 2| cos(2φ + δ2). It can be seen that Vclass depends on δ2 while V
does not. Further relevant examples of the discrepancy between V and Vclass are examined in
section 3.

2.4. Correlation functions

To the best of our knowledge, for anharmonic fringes there is no relation between the classic
definition (2.2) and correlation functions. (We should stress that, by definition, we are
excluding the case of local approximations of anharmonic fringes by harmonic ones.) However
we can show that such a relation is possible using the definition examined in this paper. The key
point is equation (2.8) that expresses V as a function of the visibility for the harmonic Fourier
components of I (φ). The concrete statistical meaning of V depends on the experimental
arrangement and also on the nature of the interfering system. We illustrate this point with
some examples.

We can start by considering the interference of two electromagnetic field modes of the
same frequency ω. For the standard case of balanced intensity measurements at the output of
two-beam interferometers (such as Young, Michelson and Mach–Zehnder) we have

�(φ) = e−iφa
†
1a2 + eiφa1a

†
2 (2.14)

where a1 and a2 are the complex amplitude operators for the internal modes of the
interferometer, and φ represents the phase difference between a1 and a2. In this case of
harmonic fringes we have that Vk = 0 for k �= ±1, 0 and then

E1 ∝ a
†
1a2 V1 ∝ ∣∣〈a†1a2

〉∣∣. (2.15)

These equations can be easily generalized to non-monochromatic multimode fields leading
to non-harmonic fringes. In such a case, it can be seen that Vk is proportional to the mutual
spectral density of the interfering fields [6]. Therefore, V2 is the integral of the squared
modulus of the mutual spectral density.

Due to the generality of the approach developed here we can present more involved
examples far from the familiar interferometric arrangements examined above. For example
we can focus on the usual situation in which�(φ) can be expressed as

�(φ) = |φ〉〈φ| (2.16)

for some vectors |φ〉. In this case we have that

Ek =
∑
n

|n〉〈n + k| 〈ψ|Ek|ψ〉 =
∑
n

ψ∗(n)ψ(n + k) (2.17)
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where |n〉 is the basis dual to |φ〉

|φ〉 = 1√
2π

∑
n

einφ|n〉 |n〉 = 1√
2π

∫
2π

dφ e−inφ |φ〉 (2.18)

and ψ(n) = 〈n|ψ〉. We can see that, in this case, Ek is the autocorrelation function of the
wavefunctionψ(n) so that V2 is the integral of the its squared modulus.

These examples show that for each situation we can find a direct relationship between V
and suitable correlation functions and spectral densities. We stress that no relations of this
form can be derived from equation (2.2).

2.5. Uncertainty measures

There are many situations in which I is actually a probability distribution I (φ) = P(φ) so that

V2 = 2π
∫

dφ[P(φ)]2 − 1. (2.19)

This and similar relations have already been used as measures of localization and uncertainty
[7–11]. In this context 1/V can be interpreted as the effective area where P(φ) is different
from the uniform constant value 1/(2π). More specifically, equation (2.3) can be regarded as
a particular case of a general class of measures of localization [10–12]

Mr =
(∫

dφ[P(φ)]1+r

)1/r

. (2.20)

In our case we have that V2 ∝ M1. This identification endows the definition (2.3) with
desirable properties such as those listed in [10].

In this same context, the mean values |〈ψ|Ek|ψ〉| can be regarded as a measure of
fluctuations of the observable �(φ) (which we may call certainty [13]) closely related to the
dispersion [14–16]. In this sense the visibility (2.3) is a sum of certainties as revealed by
equations (2.8) and (2.10).

This natural relation between visibility and fluctuations has found applications in the
context of quantum complementarity exemplified by the wave–particle duality. In this context
the visibility is intended to provide a measure of the degree of wave behaviour (represented by
the observable�(φ)) of the interfering system. We have just shown that V is perfectly suited
for this purpose. Moreover, in a previous paper [13] this identification is used to introduce
suitable duality relations involving V that explain how complementarity is enforced by
the quantum fluctuations of the measuring apparatus for two-dimensional systems. In [13]
these duality relations are examined and compared to similar relations involving Vclass [17].
The duality relations based on V can be generalized to systems of arbitrary dimension, as
shown in [9]. The usefulness of V in this context is further demonstrated in [4].

3. Applications

In this section we apply the above ideas to some relevant fringe patterns comparing the
definitions (2.2) and (2.3). The results of the comparison are further discussed in section 4.
Focusing on anharmonic fringes we examine interferometric patterns made of isolated
peaks in uniform backgrounds. This is a very representative case directly related to many
experimental arrangements including classic multiple-beam arrangements, such as the Fabry–
Perot interferometer, as well as recent and sophisticated examples of quantum measurement,
such as that reported in [1].
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π−π
φ

I( )φ

Figure 1. Bright peak in a dark background for λ = 15 and α = 1 in equation (3.1).

3.1. Harmonic fringes

The first example we may consider is the standard case of the harmonic patterns in
equation (2.12) produced by two-beam interferometers. We have already examined this case
in section 2.3 showing that both definitions of visibility provide the same result. In particular,
equation (2.13) implies that for harmonic fringes V is bounded from above V � 1/

√
2.

3.2. Anharmonic fringes

For the sake of definiteness we focus on patterns I (φ) having a single narrow peak centred at
φ = 0 in a uniform background. As a model for such a function for a periodic variable we use
the von Mises distribution proportional to exp(λ cosφ) [18]. Using the invariance under scale
changes we normalize the distributions on the form

∫
2π dφI (φ) = 2π such that 〈I 〉 = 1. In

these conditions

I (φ) = 1 − α

(
1 − 1

I0(λ)
eλ cosφ

)
(3.1)

where I0(λ) is the modified Bessel function of order zero, and α and λ are real parameters that
determine the height of the background and the width of the peak, respectively. Incidentally,
the von Mises function is the probability distribution for the quantum phase of a single-mode
field prepared in a type of phase-number intelligent state [15, 19].

The function (3.1) is the analogue of a Gaussian for periodic variables (other analogues
can be found in [16, 20]). This is especially clear in the limit λ � 1. In such a case
exp(λ cosφ) can be safely replaced by a Gaussian dependence exp(−λφ2/2) extending the
range of variation of φ to ±∞.

For the distribution (3.1) we have

V2 = α2

(I0(2λ)

I2
0 (λ)

− 1

)
. (3.2)

Since we always consider narrow enough peaks we assume λ � 1. In such a case
I0(x) � exp(x)/

√
2πx for x � 1 so that V can be approximated as

V2 � α2
√
πλ. (3.3)

Incidentally this demonstrates that for anharmonic fringes V is not bounded from above.

3.2.1. Bright peak in a dark background. Let us consider the case of a bright peak in a dark
background, as illustrated in figure 1. This corresponds to α = 1 in equation (3.1) so that
for large λ we have from equation (3.3) V2 � √

πλ and V → ∞ when λ → ∞. In other
words, V increases without limit when the width of the peak decreases. This agrees well with
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π−π
φ

I( )φ

Figure 2. Dark peak in a bright background for λ = 15.

the fact that this type of interference provides better resolution (i.e. resolving power) than the
harmonic fringes. Moreover, V clearly reflects that the resolution depends on the width of the
peak (i.e. the finesse).

On the other hand, for λ � 1 we always have Vclass � 1 irrespective of the width of
the peak. More precisely Vclass = tanhλ. Therefore V is far more sensitive than Vclass to the
phase information conveyed by the interference pattern.

It is worth noting that for α = 1 and λ � 1 the distribution (3.1) corresponds to the
quantum phase of states with a Gaussian distribution of photon number [15]. In such a
case λ = (�n)2, where �n is the uncertainty in photon number. This is the case of intense
coherent states and quadrature squeezed states of large mean photon number and moderate
squeezing [21].

3.2.2. Dark peak in a bright background. Let us consider the case of a dark peak
I (φ = 0) = 0 in a bright uniform background, as illustrated in figure 2. This corresponds
to α = I0(λ)/[I0(λ) − exp(λ)]. In this case for λ � 1 we have from equation (3.3)
V2 � 1/(2

√
πλ) so that V → 0 when λ → ∞. Thus the visibility tends to zero when the peak

narrows. On the other hand, the classic definition gives the opposite result; always maximum
visibility Vclass = 1 irrespective of the width of the peak.

Let us show that also in this case V provides the right answer. As the width of the peak
decreases, the area it encloses also decreases. This implies that I (φ) approaches the uniform
distribution. In other words, as λ → ∞ it is more and more difficult to detect the existence
of the peak. This is especially clear if we focus on a quantum realization where the area
enclosed by the peak represents the probability of the occurrence of a certain effect. If the
area decreases, the occurrence of a meaningful outcome tends to have a null probability so
that it will be accordingly difficult to detect the existence of any interference effect.

3.2.3. Bright peak in a bright background. A bright peak in a less bright background
corresponds to 1 > α > 0 in equation (3.1) so that 1 − α represents the height of the
background (figure 3). In order to investigate the differences between Vclass and V let us
consider the case in which α2

√
λ → 0 and α

√
λ → ∞ when λ → ∞. This corresponds to a

peak whose height tends to infinity but whose width and the area it encloses tend to zero. In
such a case it can be easily seen that Vclass and V lead again to opposite results: Vclass → 1
while V → 0.

We can show that also in this case V provides a more meaningful measure of the visibility
of the interference. The limit Vclass → 1 occurs because Imax → ∞ while Imin → 1. However,
the area enclosed by the peak tends to zero so that the interference pattern tends to be uniform.
Therefore, the same reasoning of the previous example applies here.
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π−π
φ

I( )φ

Figure 3. Bright peak in a bright background for λ = 15 and α = 0.2 in equation (3.1).

3.2.4. Reciprocal peak likelihood phase states. The results of the preceding examples suggest
that V may provide a suitable measure of phase resolution better behaved than Vclass. In this
subsection we deepen this issue focusing on a specific approach to the quantum measurement
of the phase shift of a single mode field. Our aim is to apply and compare both definitions of
visibility, discussing the relevance of the respective conclusions.

A variety of different approaches conclude that there is a fundamental quantum limit for
the resolution δφ of a phase-shift measurement depending on the fluctuations of the photon
number�n on the form δφ ∝ 1/�n. The ultimate resolution achievable (the Heisenberg limit)
occurs when �n = n̄, where n̄ is the mean number of photons involved in the measurement
[3, 15, 22]. It is worth noting that the Heisenberg limit can be reached by the states
with Gaussian photon number distribution mentioned in subsection 3.2.1 provided that
λ = (�n)2 = n̄2 � 1.

The actual performance of a measurement depends on the measure of error adopted. In
[23] a phase measurement is proposed that seemingly would break the Heisenberg limit with
a resolution scaling as δφ ∝ 1/n̄2 or even better. The statistics of such phase measurement is
given by projection of an optimum input state |ψ〉 on the Susskind–Glogower phase states |φ〉
(ideal phase measurement), P(φ) = |〈φ|ψ〉|2, where

|φ〉 = 1√
2π

∞∑
n=0

einφ|n〉 (3.4)

and

|ψ〉 = N
M∑
n=0

1

r + n
|n〉. (3.5)

Here M and r are state parameters and N is a normalization constant. The uncertainty criterion
adopted in [23] is the reciprocal peak likelihood δφ = 1/Pmax where Pmax is the maximum
of P(φ). However it has been shown that reciprocal peak likelihood is not a meaningful
performance measure in this context [24]. Other data analyses imply that δφ actually does not
scale as 1/n̄2 so that this strategy does not reach the Heisenberg limit [24].

Our goal here is to apply both definitions of visibility to the distribution P(φ) = |〈φ|ψ〉|2
studying which definition gives more meaningful results in the light of the above discussion.
In general, for fixed r we find that both visibilities grow when the mean photon number
increases. However they grow at a different rate, as can be seen in figure 4. In these plots we
have compared V and Vclass for the state (3.5) with the corresponding visibilities V ′ and V ′

class
for a photon-number Gaussian state with the same mean number of photons as (3.5) and with
�n = n̄ (i.e. the states in subsection 3.2.1 that reach the Heisenberg limit).
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Figure 4. Plot of V/V ′ (solid curve) and Vclass/V
′
class (dashed curve) as a function of M, where

V and Vclass are the visibilities for the phase probability distribution of the state (3.5) with r = 1
while V ′ and V ′

class are the visibilities for the phase probability distribution for a Gaussian state
reaching the Heisenberg limit (i.e. α = 1, λ = n̄2 in equation (3.1)).

In figure 4 we have represented V/V ′ (solid curve) and Vclass/V
′

class (dashed curve) as
functions of M for r = 1, and it must be taken into account that n̄ increases when M
increases. We can appreciate that for the classical definition Vclass � V ′

class. This implies that
for increasing M the states (3.5) would provide the same visibility as the states reaching the
Heisenberg limit.

On the other hand, it can be seen in figure 4 that the use of V leads to opposite results and
for the state (3.5) the visibility V is increasingly worse than V ′ when M increases. This result
coincides with the conclusions of [24] and confirms that V is more sensitive than Vclass to the
relevant details of the interference.

4. Discussion

In this paper, we have examined a suitable definition of visibility. The analysis in section 2 and
the examples analysed above demonstrate that this new approach is better behaved than the
classic approach. Some of the difficulties that the classical definition encounters arise because
it puts too much emphasis on the closeness of Imin to zero. For example, when Imin = 0 we
have Vclass = 1 irrespective of any other characteristic of the fringes. We have shown that
this implies that Vclass is, to a large extent, insensitive to the information conveyed by the
interference pattern.

More specifically, we have presented some examples of interference patterns that
are arbitrarily close to the uniform distribution for which the classic definition gives the
inconsistent result Vclass = 1 while the new definition provides a meaningful value V = 0. The
other examples confirm that V is better behaved since it properly accounts for the following
facts: (a) narrow peaks can provide a much more efficient interference effect than harmonic
fringes (as corroborated by the resolving power of multiple-beam interferometers); (b) the
quality and usefulness of the interference depends not only on the height of peaks and
valleys but also (and more importantly) on the width of the peak and on the area it encloses.
We have shown that Vclass is insensitive to these features while V clearly reflects all of
them. These are items of practical importance since the primary goal of most interferometric
arrangements is to provide information about the interfering system. In this same context,
we have shown that V is closely related to other well-studied measures of fluctuations and
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information. This can explain its sensitivity to the amount of information provided by the
interference.

It is known that for the harmonic fringes obtained by intensity measurements the classic
visibility is proportional to correlation functions. However, for more involved situations
such a powerful connection is lost and no general relation of this kind is known. The
fruitful connection between visibility and correlation functions is successfully recovered by
the definition studied in this paper.

All these points demonstrate that V is a natural extension of the concept of visibility
including arbitrary anharmonic interference patterns.
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